Afterlife of bacterial cell debris: Peptidoglycan in the gastrointestinal tract

Christian Nyffenegger, PhD Research Scientist, Animal Health and Nutrition Novozymes A/S, Denmark

Outline

- 1. The problem: dead bacteria and cell debris in the gut
- 2. Solving the problem: using a novel microbial muramidase
- 3. How the solution works

Life after death

Nikolai Fedorovich Gamaleia (1859-1949)

- Worked in Pasteur's lab in 1886
 - Later joined Ilya Mechnikov
- studied the effect of injection of dead bacteria in rabbits and sheep

Afterlife of bacterial cell debris

A holistic view of microbiota: includes dead bacteria and cell debris

The problem: dead bacteria and bacterial cell debris in the gut

All parts interact with the host cells in the GIT

Dead bacterial Dead bacteria cell debris (PGNs)

X+

Peptidoglycan (PGN): a major component of all bacteria

- PGN dry weight:
 - Gram- 10%
 - Gram+ 80-90%
- Unique biopolymer only found in bacterial cell wall
- Provides structure, shape and counteracts osmotic pressure
- Abundant in the gut

Peptidoglycan: a complex polymer forms the bacterial cell wall

Peptidoglycan: a complex polymer forms the bacterial cell wall

Solving the problem

Using a novel microbial muramidase to cleave PGN

A novel microbial muramidase

A novel microbial muramid

- Hydrolyses peptidoglycan (PGN)
- β-1,4-N-acetylmuramidase activity
- Lack of apparent antimicrobial potency
- The only solution targeting dead and decomposing bacteria

How the solution works

The novel microbial muramidase degrades peptidoglycan from relevant gut bacteria

Microscopy of intact and hydrolyzed peptidoglycan

novozymes[®]

Enterococus gallinarum

The novel microbial muramidase depolymerizes peptidoglycan into smaller fragments

Novel microbial muramidase: Impact on animal physiology

PGNs accumulate in the intestinal

tract

"Good" bacteria feeds on smaller PGN debris Novel microbial muramidase hydrolyzes PGNs

Nutrients are now able to be absorbed

absorption

In vivo data of a novel microbial muramidase

Safety evaluation of a novel muramidase for feed application

J. Lichtenberg ^a, E. Perez Calvo ^b, K. Madsen ^a, T. Østergaard Lund ^a, F. Kramer Birkved ^a, S. van Cauwenberghe ^c, M. Mourier ^a, L. Wulf-Andersen ^a, A.J.M. Jansman ^d, R. Lopez-Ulibarri ^{c,*}

^a Novozymes A/S, Krogshoejvej 36, DK-2880 Bagsvaerd, Denmark
^b DSM Nutritional Products France, Centre de Recherche en Nutrition et Santé Animale, F-68305 Saint Louis, France

Evaluation of a microbial muramidase supplementation on growth performance, apparent ileal digestibility, and intestinal histology of broiler chickens

F. Goodarzi Boroojeni,^{*,1} K. Männer,^{*} J. Rieger,[†] E. Pérez Calvo,[‡] and J. Zentek^{*}

*Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin,

Evaluation of dietary supplementation of a novel microbial muramidase on gastrointestinal functionality and growth performance in broiler chickens

Mounira Sais,^{*} Ana C. Barroeta,^{*} Paola López-Colom,^{*} Miquel Nofrarías,[†] Natàlia Majó,^{†,‡} Rual Lopez-Ulibarri,[§] Estefanía Pérez Calvo,^{*} and Susana M. Martín-Orúe^{*,1}

^{*}Animal Nutrition and Welfare Service. Animal and Food Science Department, Universitat Autônoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; [†]IRTA, Centre de Recerca en Sanitat Animal (CReSA, UAB-IRTA), Campus de la Universitat Autônoma de Barcelona, 08193 Bellaterra, Spain; [‡]Departament de Sanitat i Anatomia Animals, Universitat Autônoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; [§]DSM Natritional Products Ltd, Nutrition Innovation Center - ANII, 4303 Kaisemagst, Swiizerland; and [‡]DSM Nutritional Products Ltd, Nutrition Innovation Center - ANH, 68128 Village Neuf, France

•••

Muramidase supplementation in broiler chicken diet

- Delivers consistent effects in more than 50 in vivo studies performed globally.
- Increases body weight gain
- Improved utilization of feed (improved FCR)
- Increased digestibility of key nutrients
- A range of other beneficial effects
- Can save globally 9 million tons of CO2 equivalents.

Effects of the novel microbial muramidase can be measured throughout the GIT

80 total 70 ٥f 60 Soluble peptidoglycan, 50 40 30 20 Gleand pH2.5-3.5 10 0

CROP

- Male Cobb 500, 35 days old
- Muramidase dose: 45 000 LSU(F)/kg
- Diet type: Corn-SBM- wheat (15%) + ionophore as coccidiostat

The novel microbial muramidase - first of its kind

- Muramidase enhances gut functionality by cleaning up bacterial debris from GIT
- Muramidase only degrades cell fragments, leaving live bacteria unaffected
- Muramidase catalyzed PGN degradation can be measured in vivo

Thank you

Questions

Further informations about the novel microbial muramidase

Lack of anti-microbial potency confirmed in vivo and in vitro

No detection of antimicrobial potency in MIC assay

- MIC (Minimal Inhibitory Concentration) assay is the industry-standard measurement of antimicrobial potency
- 7 reference strains recommended by the European Food Safety Authority
- 30 field strains isolated from poultry

No significant reduction in caecal bacterial counts

- Total caecal aerobes and anaerobes (CFU/g)
- Enterobacteria, Coliforms, Lactobacilli (CFU/g)

Conformational selection: "Smart" muramidase distinguishes between peptidoglycan conformations

<u>Stretched</u> due to pressure inside live cell (Turgor pressure: up to 20 atm) Dead cells

<u>Relaxed</u> due to lack of pressure from live cell

Monomer quantification

Chemical hydrolysis to single muramic acid sugars

5 M hydrochloric acid (pH<0) for 24 hours at 100°C

Quantification of muramic acid

peptide bridges

glycan strands

Novel method to quantify PGN degradation in digesta samples through muramic acid analysis

Muramidase

VS

hen egg white lysozyme

Chicken type lysozyme =antimicrobial

Hen egg white lysozyme and other higher animals GH22

C-like lysozyme (c for chicken)

Hydrolysis of $1 \rightarrow 4$ beta linkage

Found in milk, saliva, mucus, tears, egg-white

First enzyme, structure was solved in 1960ies

Classical Koshland retaining mechanism containing covalent glycosyl intermediate

Side activity on chitin (also $1 \rightarrow 4$ beta linkage)

Glu35=cat residue, Asp52 catalytic nucleophile in large cleft

127 aa, 4 disulphide bonds, 5 helical regions (40% of aa), five regions of beta sheet with rc and beta turns

Structure shard with GH19 (chitinases), GH23(lysozymes (goose)), GH124 (cellulases), GH134 (mannanases)

~130 aa

Novel microbial mura-Midase =not antimicrobial

Fungal muramidase

GH25

"Chalaropsis"-like lysozyme

Hydrolysis of 1→4 beta linkage

 β -1,4-N-acetylmuramidase activities

Likely retaining

Mechanism=neighboring group participation

Structure unrelated to GH22 etc.

TIM-barrel (eight-stranded beta barrel flanked by 6 (normally 8) alpha helices

Long groove in C-terminal face, culminating in deep whole of highly neg electrostatic potential = cat site

DIE motif (D and E cat residues, around pos 100)

~200 aa

Mechanism

HEWL-koshland mechanism

Novel microbial muramidase: neighbouring group participation

